

Use of AI in Education: AI Competency Framework for Teachers

M. Yaşar Özden*

Professor Emeritus, Ankara, Türkiye, ORCID: 0000-0001-6976-7822

Article history

Received:

28.03.2025

Received in revised form: 16.05.2025

Accepted: 16.06.2025

Key words:

AI in Education, Learning with AI, Learning from AI, Learning AI, AI Literacy Artificial Intelligence (AI) is significantly transforming education across K-12, higher education, and lifelong learning through three key dimensions: Learning with AI, Learning from AI, and Learning AI. Learning with AI involves utilizing AI-powered tools such as adaptive learning platforms, AI tutors (like Khanmigo and Jill Watson), and automated grading systems to personalize learning, provide real-time feedback, enhance efficiency, and improve accessibility for students with special needs. Learning from AI focuses on cultivating critical perspectives on AI's role in society, including its ethical implications, biases, and the urgent need for navigate AI-generated misinformation. media literacy to Educational initiatives are emerging to teach students how to critically evaluate AI systems and content. Learning AI entails acquiring AI-related skills like coding, machine learning, and data science to prepare students for future career opportunities and empower them to shape AI's development. The integration of AI into curricula, from K-12 to higher education and professional training, alongside extracurricular activities and policy support, reflects a growing recognition of AI literacy as a fundamental skill for navigating an AI-driven world. While AI offers considerable potential to enhance learning and teaching, its responsible integration requires careful consideration of ethical implications, equitable access, and adequate teacher training. Ultimately, a balanced approach encompassing learning with, from, and about AI is crucial for empowering students to become informed consumers, critical thinkers, and capable creators in the age of artificial intelligence.

Introduction

Artificial Intelligence (AI) is transforming education across K-12, higher education, and lifelong learning. From smart tutoring systems that personalize lessons to programs that teach students about AI's societal impact, schools and universities are increasingly intertwined with AI. Educators and policymakers are exploring how AI can enhance teaching and learning while also ensuring students develop critical thinking about AI and gain AI-related skills for the future. This report examines three key themes in AI's educational role: Learning with AI (using AI tools to enrich learning), Learning from AI (cultivating critical perspectives on AI in society), and Learning AI (building AI literacy and skills).

_

^{*}Correspondency: myozden@gmail.com

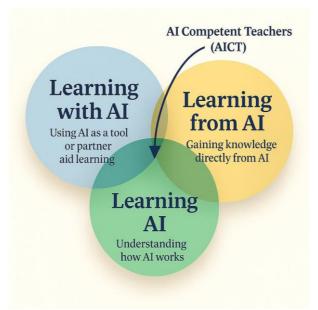


Figure 1. AI Competency Framework for Teachers

Each section provides examples, data, and case studies to illustrate current trends and challenges.

Methodology

This document, "The Role of AI in Education: Learning With, From, and About AI," presents a theoretical study on AI's multifaceted impact on education. Its creation involved a collaborative process combining human expertise with generative artificial intelligence. The human author provided the conceptual content and overall structure for the article. Generative artificial intelligence tools, specifically ChatGPT-40 and NotebookLM, assisted in refining readability and presentation, contributing to the clarity and final form of the content presented here.

Learning with AI

"Learning with AI" refers to leveraging AI-powered tools to enhance the learning experience. In classrooms and online environments, AI is being used to tailor instruction to individual needs, provide intelligent tutoring, automate routine tasks like grading, and support learners with disabilities. These innovations aim to make education more personalized, efficient, and inclusive.

Adaptive Learning Platforms and AI Tutors

AI-driven adaptive learning platforms use algorithms to adjust content and pacing to each student's level, providing a personalized pathway through material. These systems continuously analyze student performance data to identify strengths and weaknesses, then modify lessons in real-time (Business Insider, 2022). For example, the adaptive platform IXL can present extra practice on concepts a student struggles with and advance faster through topics the student masters, ensuring they "must master each skill before progressing" (Business Insider, 2022). Such personalization keeps learners appropriately challenged and engaged. AI tutors and conversational chatbots serve a similar role by offering one-on-one help. Khan

Academy's "Khanmigo" tutor (powered by GPT-4) and Georgia Tech's virtual TA "Jill Watson" illustrate how AI can interact with students via dialogue, answering questions and prompting deeper thinking. In fact, Jill Watson became so adept at answering routine questions in an online course that some students couldn't tell if their helper was the bot or a human teaching assistant (EdSurge, 2023). These AI tutor systems are available 24/7, providing timely support beyond the limits of human teachers' schedules. Early studies show promise: high schoolers with access to a generative AI tutor solved practice problems 48% better than those without it—though notably, if the AI simply gave answers (instead of hints), students became over-reliant and underperformed (scoring 17% worse on a later test without AI). This highlights the importance of well-designed AI guidance (e.g., hint-giving tutors) to truly enhance learning. Overall, adaptive learning platforms and AI tutors exemplify how AI can deliver personalized learning experiences at scale, from an elementary student getting reading practice tailored to their interests, to a college student receiving instant help in a difficult course. Educators report that such AI-driven content curation can indeed boost outcomes—in one poll, 68% of educators believed AI-powered content recommendations improved student learning results (Forbes, 2023).

Automated Grading and Feedback Systems

AI is streamlining assessment by automating grading and feedback. Machine learning models can rapidly grade exams, essays, and problem sets, freeing teachers from hours of routine marking. For instance, AI-based grading software can score multiple-choice and even open-ended responses by learning from rubrics and sample answers (AI in Education, 2023). Tools like Gradescope use AI to group similar answers, allowing instructors to grade a batch of responses with a single feedback comment (Gradescope, n.d.). Likewise, natural language processing is employed in essay scoring systems (such as the ETS e-rater) to provide quick evaluation of writing quality (ETS, n.d.). Beyond just scoring, many systems give automated feedback to students. Writing-enhancement AI (e.g., Grammarly or Turnitin's Draft Coach) can highlight grammar mistakes and suggest improvements in real time. Code autograders not only check if a program's output is correct but can pinpoint which test cases failed. These instant feedback loops help students learn from mistakes immediately instead of waiting days for returned assignments. Teachers using AI assistants say these tools let them return more feedback, faster, and identify class-wide misconceptions sooner (CalMatters, 2023). For example, English teachers in California found AI helped them grade papers more efficiently and give students more personalized comments, thus improving the learning experience (CalMatters, 2023). However, AI grading is not infallible—it may misjudge creative responses or exhibit biases if not carefully trained. Educators are urged to treat AI scores as preliminary and continue to oversee the process—as one article put it, "Who's grading the AI?" (CalMatters, 2023). When used wisely, automated grading tools can significantly reduce teacher workload on administrative tasks, allowing more time for lesson planning or one-onone student support. They also provide students with quicker feedback cycles, which is known to enhance learning.

Accessibility and Personalized Support for Special Needs

Another powerful application of AI in education is improving accessibility for students with disabilities or special needs. AI-powered assistive technologies are helping remove learning barriers by tailoring content to different abilities. For students with visual impairments, AI-based text-to-speech and image recognition can read aloud textbooks or describe diagrams.

Speech recognition systems enable students with limited mobility to dictate essays or control a computer using their voice. Similarly, real-time transcription and translation tools (often backed by AI) can provide closed captions for deaf or hard-of-hearing learners during lectures, or translate a teacher's lesson into a student's native language. Augmentative and alternative communication (AAC) devices now use AI predictive text to help individuals with speech or motor challenges construct sentences more efficiently (UNESCO, 2023). The benefit of these AI tools is their ability to personalize support: for example, an AI reading app might adjust text complexity or highlight key points for a student with a learning disability, based on the student's comprehension data. According to a 2024 report by the Consortium for School Networking (CoSN) and the accessibility nonprofit CAST, AI technologies like text-to-speech, speech recognition, and AI-driven communication tools "significantly improve personalized learning" for students with diverse needs (CoSN, 2024). Case studies show AI creating individualized learning materials and facilitating communication for students who previously struggled to participate (CoSN, 2024). These tools can make curriculum content available in multiple formats (audio, visual, simplified text), catering to each learner's requirements. For instance, Microsoft's Immersive Reader – an AI-informed tool – can automatically adjust reading level, translate languages, or read text aloud, benefiting students with dyslexia and English language learners alike (Business Insider, 2023). Al tutors can also be "infinitely patient," as one educator noted, which can especially help neurodivergent learners who need repetition or alternative explanations (Business Insider, 2023). In short, by embracing inclusive design, AI in education holds promise to ensure that every student - regardless of physical, sensory, or cognitive disability – can access learning and thrive at their own pace (CoSN, 2024).

AI-Driven Educational Advancements: Examples and Adoption Trends

Around the world, educators are experimenting with AI solutions and seeing tangible advancements. Numerous case studies highlight AI's positive impact in classrooms. In China, for example, some schools have partnered with AI tutoring companies to raise math and science proficiency. A leading Chinese adaptive learning company, Squirrel AI, reports that its AI tutors have helped students in after-school centers achieve improved test scores comparable to those of experienced human teachers, though human oversight remains crucial (Horn, 2019). In the United States, Georgia State University used an AI chatbot to reduce "summer melt" among incoming freshmen—nudging students via text to complete financial aid and enrollment steps, which led to higher college entry rates (Chokshi, 2019). On the instructional front, Khan Academy's early trials of the Khanmigo AI assistant showed students eagerly engaging in back-and-forth dialogue to solve problems, effectively receiving Socratic tutoring at scale (Khan, 2023). At Georgia Tech, the virtual TA Jill Watson has handled thousands of forum questions, freeing human TAs for more complex interactions (Ashok, 2016). These examples demonstrate AI's versatility: it can act as a tutor, a teaching assistant, a study partner, or even a guidance counselor.

The adoption of AI in education has accelerated rapidly in recent years. By 2023–24, an estimated 60% of K-12 school districts in the U.S. planned to provide training for teachers on using AI tools in instruction (Education Week, 2023). Surveys confirm that many teachers have embraced AI: one national poll found 51% of teachers had already used ChatGPT for tasks like lesson planning within a few months of its debut, far outpacing student usage (Richards, 2023). Another 2024 study by Quizlet found two-thirds of educators (both high school and college) have experimented with AI for education purposes (Watson, 2024). In higher education, adoption is even more pronounced among students—82% of college students say they have

used AI tools (for research, study help, etc.), compared to 58% of high school students (Watson, 2024). These numbers indicate that AI-powered educational technology has moved from novelty to mainstream in many settings. Students are using AI to research information (46%), summarize readings (38%), and generate study guides (31%) as common use cases (Watson, 2024). Meanwhile, teachers are using AI to save time on prep, personalize materials, and even reduce burnout by offloading repetitive tasks (Aguilera, 2023). That said, adoption is uneven some schools have cutting-edge AI programs, while others have yet to try these tools. Concerns about cheating (e.g., students having AI write essays) and the quality of AI outputs have made some educators cautious. In a fall 2023 Pew survey, only 6% of U.S. K-12 teachers believed AI tools do "more good than harm," whereas 25% feared they do more harm (Hitlin, 2023). This ambivalence underscores a key challenge: winning trust and establishing clear guidelines for AI's use in class. Nonetheless, the momentum suggests that AI will become an integral supportive layer in education. As one expert put it, "AI is the fourth industrial revolution... 'Seeing is believing' is not true anymore" (Markowitz, 2023)—in other words, AI is changing how we must approach knowledge and learning. Teachers, supported by training and robust ethical policies, are increasingly open to using AI where it demonstrably enriches student learning (Aguilera, 2023).

Learning from AI

Beyond using AI for academic tasks, it's crucial that students learn to critically understand AI itself – its role in society, its limitations, and its ethical implications. "Learning from AI" means developing media literacy and ethical reasoning skills in an age where AI-generated content and decisions are commonplace. Schools are beginning to incorporate discussions on how AI works, where it's used, and how to navigate the challenges it presents (misinformation, bias, etc.). By analyzing AI as an object of study, students become more informed citizens who can question AI outputs rather than passively accept them.

Understanding AI's Role in Society – and Its Ethical Pitfalls

Modern students are surrounded by AI in daily life: algorithms recommend videos and news to them, virtual assistants answer their questions, and AI systems help determine everything from traffic routes to loan approvals. Educators recognize that students need to grasp how these systems function and influence society. For example, as early as elementary school, teachers can point out that Netflix or YouTube uses algorithms to suggest content, sparking conversations about why certain recommendations appear (Education Week, 2019). In higher grades, lessons might explore how self-driving cars "see" the road or how facial recognition is used in security—and what happens when these technologies fail. The goal is for learners to appreciate both the power and the limits of AI. One framework for K–12 AI education, AI4K12's "Five Big Ideas," explicitly includes "Societal Impact – AI can impact society in both positive and negative ways" (Education Week, 2019). This big idea prompts students to reflect on questions like: How is AI changing jobs? What privacy trade-offs come with AI conveniences? Who is accountable if an AI makes a harmful mistake?

By grappling with such issues, students gain a nuanced view that AI is not magic; it has design choices and value judgments baked in. Importantly, ethics and bias are key topics. AI systems can inadvertently perpetuate discrimination if they learn from biased data or objectives. Teachers are using real-world case studies to make this concrete. A famous example comes from criminal justice: an algorithm used to predict recidivism (likelihood of re-offense) was

found to be twice as likely to falsely label Black defendants as high-risk compared to white defendants (ProPublica, 2016). Discussing this ProPublica investigation in class helps students see how AI decisions can reflect and worsen societal biases. Another case often cited is Amazon's experimental hiring AI, which was trained on past résumés and "taught itself that male candidates were preferable"—it began penalizing any résumé that included the word "women's" (as in "women's chess club") before the company noticed the bias and scrapped the tool (Dastin, 2018).

Through examples like these, students learn that AI models are only as fair as the data and rules given to them. Ethical considerations such as fairness, transparency, privacy, and accountability become discussion topics alongside the cool tech. Some schools have even launched mini "AI ethics" modules, where students debate dilemmas (e.g., should a self-driving car prioritize the driver's safety or a pedestrian's in an imminent crash?). The objective is not to turn every student into an AI programmer, but to ensure they can critically evaluate AI systems' impacts on society. As one educator put it, we want young people to have a balanced view—to understand what AI does well and where it can go wrong, so that "seeing is believing" no longer blindly applies (Education Week, 2019). This critical mindset will help students make informed choices in an AI-rich world and perhaps inspire them to advocate for responsible AI development.

Media Literacy and Misinformation in the AI Era

In the age of deepfakes and AI-generated text, media literacy has taken on renewed urgency. Students must learn to discern reliable information from AI-fabricated content. AI can now produce convincingly human-like essays, social media posts, images, and videos. While this technology can be used for creativity and automation, it also "turbocharges the creation and spread of misinformation," as one school district survey respondent noted (AASA, 2023). For instance, a manipulated photo of a public figure or a fake news article written by an AI might go viral before people realize it's fake. Educators are responding by integrating misinformation detection skills into lessons. At Stonewall Elementary in Kentucky, a teacher designed an exercise where students had to figure out whether a given text was written by a classmate or by the AI tool ChatGPT (Pew Research Center, 2023). Such activities train students to look for telltale signs of AI-generated content (e.g., odd phrasing or lack of personal details) and reinforce the habit of verifying information. Some classes use free online tools to analyze suspicious images—for example, checking metadata or using AI-based deepfake detectors illustrating how AI can also help fight AI-fakes. The MIT Media Lab even created an interactive "Detect Fakes" challenge that lets people test their ability to identify AI-generated images and then learn strategies for spotting subtle anomalies (MIT Media Lab, n.d.). By engaging with these tools, students see firsthand that not everything on their screen can be taken at face value.

Educators are also emphasizing "trust but verify" when it comes to generative AI like ChatGPT. While such models can answer questions fluidly, they do not guarantee truth. In fact, large language models are notorious for "hallucinating"—producing confident-sounding statements that are completely false. As a Georgia Tech researcher quipped, "ChatGPT is like a conceited human who will present a detailed lie with a straight face... it has problems saying 'I don't know" (EdSurge, 2023). Students need to be aware of this limitation. Teachers are advising students to cross-check AI-provided information with credible sources and not to use AI-generated content blindly in assignments. Some schools have begun treating AI output as just another source that requires citation and verification, akin to using Wikipedia appropriately.

The potential for bias and toxicity in AI content is another literacy aspect. Generative models have been known to produce biased or harmful language because of biases in their training data. The California education department's guidance warns that AI systems may yield "convincing but inaccurate answers... [or] imagery laden with racism or sexism" (CalMatters, 2023). By examining examples of biased outputs—for instance, an image generator that associates doctors with men and nurses with women, reflecting gender stereotypes—students can learn how to question the neutrality of AI content. Programs like the News Literacy Project are actively helping schools address these topics. In one Colorado district, as part of a news literacy initiative, 65% of surveyed students and staff identified AI's ability to spread false information as a top concern, reinforcing the need for curriculum to cover this area (AASA, 2023). The district then built lessons around recognizing AI's limitations and verifying sources, which are now a model for other schools (AASA, 2023).

Overall, "learning from AI" in this context means sharpening students' critical thinking so they can navigate a world where any video or text could be machine-generated. With these skills, students become more resilient against scams, propaganda, or biases that may come at them via AI. They learn to ask: Who created this content? What was the intent? Is there evidence behind this claim? Those questions are the cornerstone of digital literacy in the AI era.

Teaching Critical Evaluation: Classroom Initiatives and Programs

Recognizing the importance of AI literacy, educators, organizations, and governments have launched numerous initiatives to help students critically evaluate AI-driven content and systems. Some state education authorities have issued guidelines to encourage these discussions. For example, California's Department of Education released guidance in 2023 urging teachers to incorporate critical analysis of AI-generated text and images into their teaching and to openly discuss the ethical and appropriate use of AI with students (Jones, 2023). California is one of at least seven U.S. states to issue such AI-in-education guidelines, signaling a growing policy-level commitment to AI literacy. These guidelines often provide scenarios or prompts teachers can use—like analyzing a fictitious social media post created by AI for signs of misinformation or debating the fairness of an AI algorithm's outcome in a hypothetical legal case. By embedding these conversations in class, schools aim to demystify AI. Students start to see AI as constructed by humans (with all the human biases and errors that implies) rather than as an all-knowing oracle.

Several nonprofit and academic programs offer ready-made curricula and resources for teaching about AI's impact. The News Literacy Project (NLP), for instance, has integrated AI topics into its curricula for middle and high schools. In Gunnison, Colorado, a district that participated in NLP's fellowship, teachers wove AI examples into media literacy lessons—from examining how deepfakes are made to understanding why AI might surface certain news stories over others (DeWitt, 2024). They also surveyed students on their AI knowledge and usage, using the data to target instruction where misconceptions were high. The result was a district-wide plan ensuring every student learns how to navigate AI-influenced information by the time they graduate. This kind of systemic approach is becoming a blueprint for others. Likewise, organizations such as Common Sense Education and the Poynter Institute's MediaWise have developed classroom materials on identifying deepfakes, evaluating AI-generated content, and understanding algorithmic bias (DeWitt, 2024). These materials range from short lesson plans to full workshops and often include up-to-date examples (for instance, having students inspect

an AI-generated image of a celebrity doing something outrageous and compare it to authentic images).

On the technology industry side, companies have started providing educational modules on AI ethics for youth. For example, IBM's SkillsBuild platform offers a free course on AI ethics for high school students, covering topics like AI bias, privacy, and AI for social good (IBM, n.d.). Google has included an "AI literacy" component in its Be Internet Awesome curriculum to teach kids how AI selects the content they see online (Google, n.d.). There are also student competitions focusing on AI's impact—such as an "AI Ethics Essay Contest" where teens write about scenarios like facial recognition at school, proposing policies to address fairness. These activities not only build awareness but also empower students to voice their ideas on governing AI.

Notably, bias in AI is a focal point of many initiatives. Carnegie Mellon University's AI4K12 project (in partnership with the Computer Science Teachers Association) explicitly lists "analyze bias in AI" as an essential practice for K–12 students (Touretzky et al., 2020). They encourage teachers to have students test AI models for bias—for instance, using face-detection software on a diverse set of images to see if it performs differently. This hands-on experimentation makes abstract ethical issues concrete. Students who participate in such exercises often report being surprised that "AI isn't neutral" and become more skeptical of AI outputs in a healthy way.

In summary, a host of programs and classroom efforts are teaching students how to critically evaluate AI. Whether through statewide guidelines, nonprofit curricula, or teacher-driven projects, the message to learners is clear: they should question how AI works, double-check what AI produces, and consider the ethical dimensions of AI in society. By "learning from AI" in this manner, students gain the critical lens needed to use AI tools wisely and navigate a world where AI touches many decisions. This prepares them not just to consume content intelligently but also to be responsible participants in future debates about AI policy, regulation, and development.

Learning AI

The third pillar of AI's role in education is "learning AI" itself – that is, teaching students the concepts and skills to understand and create AI technologies. As AI reshapes industries and the job market, there's a growing push to integrate AI literacy, coding, and machine learning into curricula at all levels. This ranges from introducing basic AI concepts in elementary school, to offering full-fledged AI and data science courses in high school and college, to providing reskilling programs for adults. Equipping learners with AI knowledge not only prepares them for career opportunities in a tech-driven economy, but also empowers them to be informed citizens who can help shape the development of AI. Below, we explore how educational institutions are weaving AI into their teaching, from K-12 through higher education and beyond.

AI in K-12 Curriculum and Coding Education

Just as coding has entered K-12 classrooms over the past decade, AI is now making its way into primary and secondary education. Educators are finding age-appropriate ways to introduce AI concepts early on. For young students, this might involve simple activities like

training a machine learning model to recognize rock, paper, scissors gestures using a webcam—teaching the idea that computers can learn patterns from data. In upper elementary or middle school, students might experiment with block-based coding tools that incorporate AI—for example, using a service like Google's Teachable Machine to build a classifier or creating a basic chatbot in Scratch. The aim is to convey that "computers can learn from data," one of the core principles of AI4K12's five big ideas (Touretzky et al., 2023).

By high school, more formal courses are emerging. Some high schools now offer electives in artificial intelligence or machine learning, often project-based to let students experience AI development firsthand (e.g., programming a Raspberry Pi robot to navigate using image recognition). National frameworks are guiding these efforts. The AI4K12 initiative, launched in 2018, provides a grade-banded roadmap for what students should learn about AI at each level—for instance, K–2 students learning how AI might mimic human senses, grades 3–5 exploring AI in animals vs. machines, and older students digging into how algorithms work and considering AI's societal impacts (Touretzky et al., 2023). These guidelines help teachers integrate AI topics across subjects—not just in computer science class. A science teacher might discuss how AI is used in climate modeling; a civics teacher might include AI in a unit on technology and society.

Several school districts have been early adopters of AI curriculum. Notably, the state of Georgia in the U.S. worked with AI4K12 to pilot a comprehensive middle and high school AI program called AI4GA. In 2023, six Georgia middle schools in five counties rolled out a nine-week elective titled "Living and Working with Artificial Intelligence," with lesson plans covering machine learning basics, AI applications, and ethics (Touretzky et al., 2023). The pilot aimed to engage students from diverse backgrounds—including rural and underserved communities—to spark interest in AI careers and ensure inclusivity. Initial feedback was positive, and Georgia is moving toward officially adopting AI courses in its state curriculum, signaling a trend that other states are watching.

Similarly, China has made a bold move by mandating AI education at the secondary level. In 2018, China's Ministry of Education published the country's first AI textbook for high school students, Fundamentals of Artificial Intelligence, and launched it in about 40 high schools as a pilot (China Daily, 2018). The textbook covers AI history, algorithms, and applications like facial recognition and self-driving cars. This is part of a broader plan in China to introduce AI concepts even in primary grades and build a pipeline of AI-proficient graduates to meet future demand. An official noted that the AI sector faces a talent shortage and that bringing AI "out of the ivory tower" into K–12 is a strategic breakthrough (China Daily, 2018). These examples illustrate a global recognition: introducing AI literacy early can help close skills gaps and diversify the field by reaching students who might not encounter AI until much later.

Beyond formal classes, coding camps and clubs are integrating AI projects to excite younger learners. Robotics competitions (like FIRST or VEX) have started adding AI components—for instance, the VEX Robotics Competition now has an AI division where high school teams program robots to navigate autonomously using computer vision and AI decision-making (Veritas AI, 2024). After-school coding clubs are using curricula from groups like AIclub, Inspirit AI, or Google's AIY kits, enabling students to build things like speech-recognition apps or simple AI games. Hackathons for high schoolers increasingly feature AI tracks; events such as the World Artificial Intelligence Competition for Youth (WAICY) invite students globally

to present AI projects addressing real-world issues (Veritas AI, 2024). These extracurriculars provide hands-on experience that complements classroom learning, often with mentorship from industry volunteers or university AI labs. They also make AI learning fun and creative, helping to dispel the notion that AI is too complex for kids. In fact, middle-schoolers have created AI projects from identifying plant species with neural networks to using sentiment analysis to detect cyberbullying—demonstrating that with the right support, even young students can grasp and apply AI concepts.

AI in Higher Education and Professional Training

Unsurprisingly, higher education has been quick to embrace AI as both a field of study and a tool for instruction. Universities worldwide are expanding their offerings in AI, machine learning (ML), and data science to meet student interest and industry demand. At the undergraduate level, new majors and minors have appeared. In 2018, Carnegie Mellon University became the first U.S. college to offer a dedicated bachelor's degree in Artificial Intelligence, enrolling a cohort of about 30 students in its first year (EdScoop, 2018). This program blends computer science, math, AI theory, and even ethical coursework to produce well-rounded AI specialists. Following CMU's lead, other institutions like MIT, Stanford, and the University of Texas announced their own AI-centric degrees or concentrations within computer science. Many universities that don't have a standalone AI major still offer minors or certificates in AI/ML, allowing students in diverse disciplines (from engineering to business) to gain foundational AI skills. On the graduate level, the growth is even more pronounced – Master's programs in Data Science or Machine Learning have proliferated, and PhD programs in AI are highly competitive. Importantly, these higher-ed programs often incorporate interdisciplinary elements, recognizing that AI intersects with fields like healthcare, law, and the arts. For example, the University of Oxford's master's in Social Data Science or Georgetown's master's in AI Ethics and Society aim to produce graduates who can bridge technical and societal aspects of AI. According to LinkedIn's job postings data, AI skills (machine learning, NLP, etc.) were among the fastest-growing skill categories in the early 2020s (LinkedIn, 2025).

In addition to degree programs, there's a rise in professional certificates and online courses making AI education accessible to a broader audience (lifelong learners and working professionals). Platforms like Coursera, edX, and Udacity offer popular courses such as Andrew Ng's Machine Learning, fast.ai's Practical Deep Learning, and entire online master's degrees in AI from institutions like UT Austin and Imperial College London. One standout initiative is the Elements of AI online course created by the University of Helsinki and MinnaLearn, which is free to the public with the goal of demystifying AI for ordinary people. It has been wildly successful – over 1 million people from 170+ countries have taken the Elements of AI course, making it one of the most enrolled online courses ever (University of Helsinki, 2021). The Finnish government originally launched it to educate 1% of its citizens about AI basics, and its popularity led to translations in 26 languages and adoption across the EU. Such massive open online courses (MOOCs) illustrate how AI literacy is not just for formal students but for lifelong learning; adults in various careers are upskilling to stay current with AI trends. Industry certifications are also valued – for instance, Google, Microsoft, and IBM offer AI engineering certificates that signal to employers that a person has practical proficiency in building AI models or using AI cloud services (IBM, n.d.).

Higher education institutions themselves are adapting teaching methods in response to AI. Some professors incorporate AI tools into coursework – having students use a machine learning library to analyze data in a statistics class or evaluate AI-generated art in a design class. Universities are also creating interdisciplinary centers (like MIT's College of Computing or Stanford's Human-Centered AI Institute) that influence curriculum and sponsor student projects. Furthermore, universities often partner with industry on AI research and internship programs, giving students real-world experience. For example, a student in a university AI program might intern at a tech company to work on natural language processing or collaborate on an applied AI research project in agriculture or medicine (Stanford HAI, 2023).

On the policy front, governments and educational bodies are actively encouraging AI education to build a skilled workforce. The U.S. National Science Foundation has funded AI workforce development programs and K-12 AI curriculum R&D (including AI4K12) (NSF, 2023). The European Union's Digital Education Action Plan (2021–2027) explicitly calls for promoting digital and AI skills in schools, and EU countries have launched numerous coding and AI initiatives (such as France's INRIA offering AI classes for high schoolers, or the UK publishing guidance on teaching AI within computer science) (European Commission, 2021). China has a national strategy to produce many AI graduates by 2030; its Ministry of Education's "AI Innovation Action Plan for Higher Education" seeks to establish 50 world-class AI institutes and greatly expand the number of AI majors (China Daily, 2018). In India, the CBSE introduced AI as an elective subject for high school in 2019, and tens of thousands of students have since enrolled in introductory AI courses that cover both technical skills and ethical issues (CBSE, 2020). International organizations are also stepping in - UNESCO in 2023 released AI competency frameworks for students and teachers to help countries integrate AI in education responsibly. UNESCO's student framework outlines competencies in areas like having a human-centered mindset, understanding ethics of AI, grasping AI techniques, and even basic AI system design concepts. It emphasizes cultivating students as "AI co-creators and responsible citizens" who exercise critical judgment about AI and can contribute to developing inclusive AI solutions (UNESCO, 2023).

Extracurricular and Lifelong Learning Opportunities

Learning AI isn't confined to formal courses – a lot of education happens in informal settings, clubs, and self-driven learning. Hackathons and competitions have become a vibrant way for students to learn AI by doing. As mentioned, high school hackathons frequently have AI themes, challenging teens to build an app or prototype over a weekend that uses AI for, say, solving a community problem. These events often include workshops on AI basics and mentorship from professionals. For example, the annual AI4ALL programs, supported by a nonprofit, run summer camps for high schoolers from underrepresented groups to learn about AI and work on projects under the guidance of university researchers (AI4ALL, n.d.). Another competition, the Intel AI Global Impact Festival, invites students worldwide to showcase AI projects with social impact – winners have built things like AI systems to detect crop diseases or to assist the visually impaired (Intel, 2023). Through participating, students not only pick up technical skills but also learn teamwork and gain exposure to the broader AI community.

Colleges have also seen a boom in AI-focused student organizations. University AI clubs host events like "Intro to TensorFlow" workshops, guest lectures by AI researchers, and student-led research projects. These clubs create a peer learning environment and often partner with industry to get resources (cloud credits, datasets) for students to experiment with. Some even

run student research journals or hackathon teams that compete nationally. Importantly, such extracurriculars often welcome students from any major – recognizing that you don't have to be a CS major to be interested in AI's applications in, say, finance or biology. This interdisciplinary outreach is growing the community of "AI-literate" individuals in all fields (Stanford University AI Group, n.d.).

For those already in the workforce, lifelong learning options are plentiful and increasingly necessary. Employers and governments are pushing reskilling initiatives to help workers adapt to AI-driven changes in their jobs. Companies are offering in-house training on AI tools for their employees - for instance, accounting firms training staff on AI-based data analysis, or marketing agencies training creatives on using AI for ad targeting (Deloitte, 2020). Governments, too, are funding adult education: the EU's Digital Europe Programme, for example, invests in digital skills training to help small business employees and others learn to work with AI and other digital tools (European Commission, 2023). According to the World Economic Forum, AI is expected to replace 85 million jobs by 2025, making continuous reskilling essential (World Economic Forum, 2020). Professional associations also host webinars on AI trends in their industries (e.g., "AI in healthcare" for nurses, "AI in law" for paralegals) to raise awareness and competence. And of course, the plethora of online courses means motivated individuals can self-teach. The tech community also shares knowledge freely – open-source libraries come with tutorials, and forums like Kaggle or Stack Overflow enable peer-to-peer learning about AI algorithms. In effect, the learning ecosystem for AI spans formal and informal avenues, ensuring anyone with curiosity can start learning AI at any stage of life.

Workforce Implications and Future Opportunities

Driving much of the "learning AI" movement is the reality that AI skills are in high demand – and that demand is only expected to grow. Training students in AI is seen as vital for future career readiness. The World Economic Forum estimates that by 2025, automation and AI will displace about 85 million jobs worldwide but also create around 97 million new ones in areas like data analysis, software development, and AI maintenance (World Economic Forum, 2020). In other words, while AI may automate certain routine tasks, it is also generating a need for a workforce skilled in developing, managing, and collaborating with AI systems. Occupations such as machine learning engineers, data scientists, AI ethicists, and robotics technicians are burgeoning. Even in fields not traditionally "tech," employers value AI literacy – for example, a marketing specialist who knows how to leverage AI analytics, or an HR manager who understands AI-based hiring tools (and their pitfalls) will be more effective. This is why educational institutions are infusing AI content across disciplines.

Students who gain AI skills can access exciting new career paths. They might work on cutting-edge technologies like autonomous vehicles, smart healthcare diagnostics, or environmental monitoring systems powered by AI. There is also a push to encourage a diverse range of students to consider these careers, addressing historical underrepresentation in tech. Programs focused on girls in AI or minorities in AI (like Black in AI workshops) at the student level aim to build a more inclusive AI talent pool (Black in AI, n.d.). From an economic standpoint, countries view AI education as essential for competitiveness. Nations leading in AI expertise can drive innovation and growth – a fact noted in numerous national AI strategies. Finland's leadership, for instance, credited its Elements of AI course with boosting general AI awareness, which contributes to an innovation-friendly environment (University of Helsinki, n.d.).

Likewise, China's massive investment in AI education is tied to its goal of becoming a global AI leader (Stanford Institute for Human-Centered Artificial Intelligence, 2021).

However, preparing students for an AI-rich workforce isn't just about technical skills. Many experts emphasize "21st-century skills" that complement AI: creativity, critical thinking, problem-solving, and ethics. As AI handles more automation, uniquely human skills become even more important. Education is thus tasked with a dual challenge – teach students to build and work with AI, but also to do what AI cannot. This means encouraging innovation, interdisciplinary thinking, and ethical reasoning. Some universities now require AI or data science students to take humanities courses on technology ethics, while some liberal arts colleges ensure all students get a primer on coding/AI so they can engage with tech debates (Future of Life Institute, 2023). The endgame is a workforce (and citizenry) that is AI-proficient and AI-conscious. For example, an engineer might build an AI system and also foresee its societal impact, or a business leader might implement AI solutions and also navigate the retraining of employees whose roles evolve.

In summary, "learning AI" is becoming an integral part of education at all levels due to the clear future trajectory: virtually every field will interface with AI, and new jobs will emerge around it. Schools and universities are responding by weaving AI knowledge and skills into the fabric of learning, through formal courses, practical projects, and policy support. As this trend continues, we can expect an ever-increasing number of students to graduate not only as knowledgeable users of AI but also as contributors to AI advancements, bringing fresh perspectives to this rapidly changing landscape.

Conclusion

AI's role in education is multifaceted and rapidly evolving. In the realm of learning with AI, we see tangible benefits from personalized tutors, smart content recommendations, and efficient AI assistants that augment what teachers and students can do. These AI tools, when thoughtfully integrated, can make learning more engaging and tailored to each student's needs, as well as help educators be more effective and save time (Education Week, 2023; CalMatters, 2023). At the same time, the rise of AI has made it imperative that students are learning from AI – developing critical thinking about the information and decisions AI generates. Schools are increasingly taking on this mission by teaching about AI ethics, bias, and media literacy, so that students become discerning users of AI and responsible digital citizens (CalMatters, 2023; AASA, 2023). Importantly, education systems are ramping up efforts in learning AI, giving students opportunities to delve into coding, data science, and machine learning, thereby equipping them with skills for the careers of tomorrow and a voice in shaping AI's future (ISTE, 2023; EdScoop, 2023).

The latest trends highlight both optimism and caution. Generative AI like ChatGPT has exploded into classrooms, with many teachers and students experimenting enthusiastically, citing faster learning and personalized support (EdWeek Market Brief, 2023; EducationWeek, 2023). Yet, this comes with challenges: concerns over academic integrity, the accuracy of AI outputs, and uneven access to these tools. There's also a digital divide risk – well-resourced schools may adopt AI tech quickly, while under-resourced schools could be left behind. Encouragingly, initiatives aimed at equity—such as grants for AI and broadband in Title I schools (Business Insider, 2023) or programs like AI4ALL targeting underrepresented youth—are trying to bridge this gap. Another challenge is preparing teachers. Professional development

is crucial so that educators understand AI's capabilities and limits; the fact that 60% of districts plan to train teachers on AI by 2024 is a step in the right direction (Education Week, 2023). Teachers will need support to incorporate AI into pedagogy effectively and ethically.

Looking ahead, AI in education will likely become as commonplace as laptops or projectors—an everyday tool and subject. We can expect more adaptive textbooks, AI lab partners for science experiments, and even AI-driven creative tools in arts classes. Simultaneously, curriculum standards may soon include AI literacy alongside traditional literacies. The workforce connection will remain a driving force: as industries adopt AI, educational institutions will adapt to prepare students accordingly. The future of jobs is being written in the classrooms of today, with AI as both author and subject. With careful attention to ethics, inclusivity, and teacher training, AI's infusion into education can enhance learning for all and inspire a generation of learners who are not only consumers of AI, but also its informed critics and capable creators. In essence, embracing AI in education—learning with it, from it, and about it—is key to empowering students in the 21st century, ensuring they thrive in a world where humans and AI learn and work together.

Author's Note: This article was created through a collaborative process combining human expertise with generative artificial intelligence. The author provided the conceptual content and overall structure, while ChatGPT-40 and NotebookLM assisted in refining readability and presentation.

References

- Aguilera, E. (2023, September 12). AI education: CA teachers use AI to grade papers. CalMatters. https://calmatters.org/education/2023/09/artificial-intelligence-teachers-education/
- AI4ALL: (n.d.). AI4ALL: Opening doors to AI for underrepresented talent. https://ai-4-all.org/Ashok, A. (2016, August 8). Meet Jill Watson: Georgia Tech's virtual teaching assistant. Georgia Tech News Center. https://news.gatech.edu/2016/08/08/meet-jill-watson-georgia-techs-virtual-teaching-assistant
- AASA. (2023). The case for news literacy skills in an AI world. AASA, The School Superintendents Association. https://www.aasa.org/ideas/features/the-case-for-news-literacy-skills-in-an-ai-world
- Black in AI. (n.d.). Black in AI: Sharing ideas, fostering collaborations and discussing initiatives to increase the presence of Black people in the field of AI. https://blackinai.org/
- Business Insider. (2022, July 12). How adaptive tech is helping educators and students learn and succeed. https://www.businessinsider.com/how-adaptive-tech-is-helping-educators-and-students-learn-and-succeed-2022-7
- Business Insider. (2023, September 11). How adaptive tech is helping educators and students learn and succeed. https://www.businessinsider.com/educators-use-adaptive-tech-to-help-students-learn-2023-9
- CalMatters. (2023, July 31). AI education: California schools experiment with artificial intelligence in classrooms. https://calmatters.org/education/2023/07/ai-education-california-schools/
- CBSE. (2020). Artificial intelligence curriculum. Central Board of Secondary Education. https://cbseacademic.nic.in/ai.html

- China Daily. (2018, April 12). China to build 50 world-class AI institutes in universities. https://www.chinadaily.com.cn/a/201804/12/WS5acf1ff6a3105cdcf65182fa.html
- China Daily. (2018, July 12). First AI textbook for high school students released. https://www.chinadaily.com.cn/a/201807/12/WS5b4709b1a310796df4df60ec.html
- Chokshi, N. (2019, April 8). How Georgia State used an AI chatbot to boost enrollment. The New York Times. https://www.nytimes.com/2019/04/08/us/georgia-state-university-chatbot.html
- Consortium for School Networking (CoSN). (2024). AI and accessibility in education. https://www.cosn.org/edtech-topics/ai-and-accessibility/
- Dastin, J. (2018, October 10). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
- DeWitt, K. (2024). The case for news literacy skills in an AI world. AASA. https://www.aasa.org/resources/resource/the-case-for-news-literacy-skills-in-an-ai-world
- Deloitte. (2020). AI adoption in the enterprise: State of AI in the enterprise, 3rd edition. https://www2.deloitte.com/us/en/insights/focus/cognitive-technologies/state-of-ai-and-intelligent-automation-in-business-survey.html
- Education Week. (2023, November 20). Using artificial intelligence tools in K–12 classrooms. https://www.edweek.org/technology/using-artificial-intelligence-tools-in-k-12-classrooms/2023/11
- EducationWeek. (2023). ChatGPT used by teachers more than students: New survey. https://www.edweek.org/technology/chatgpt-used-by-teachers-more-than-students-new-survey/2023/06
- EdScoop. (2018, May 25). What the country's first undergrad program in artificial intelligence will look like. https://edscoop.com/article/carnegie-mellon-launches-first-undergrad-ai-degree/
- EdScoop. (2023). What the country's first undergrad program in artificial intelligence will look like. https://edscoop.com/article/first-undergraduate-ai-degree-university-of-florida/
- EdSurge. (2023, October 6). Georgia Tech is trying to keep a ChatGPT-powered teaching assistant from 'hallucinating'. https://www.edsurge.com/news/2023-10-06-georgia-tech-is-trying-to-keep-a-chatgpt-powered-teaching-assistant-from-hallucinating
- EdSurge. (2023, October 9). Georgia Tech is trying to keep a ChatGPT-powered teaching assistant from 'hallucinating'. https://www.edsurge.com/news/2023-10-09-georgia-tech-is-trying-to-keep-a-chatgpt-powered-teaching-assistant-from-hallucinating
- ETS. (n.d.). AI and education: The power of the ETS® e-rater® scoring engine. https://www.ets.org/s/corp/ai-education/
- European Commission. (2021). Digital education action plan (2021–2027). https://education.ec.europa.eu/focus-topics/digital/digital-education-action-plan
- European Commission. (2023). Digital Europe Programme (DIGITAL). https://digital-strategy.ec.europa.eu/en/activities/digital-programme
- Forbes Technology Council. (2023, August 29). Next-gen education: Eight strategies leveraging AI in learning platforms. Forbes. https://www.forbes.com/sites/forbestechcouncil/2023/08/29/next-gen-education-eight-strategies-leveraging-ai-in-learning-platforms
- Future of Life Institute. (2023). AI education and curriculum. https://futureoflife.org/aieducation/
- Google. (n.d.). Be Internet Awesome. https://beinternetawesome.withgoogle.com/

- Gradescope. (n.d.). AI-assisted grading. https://www.gradescope.com/ai-assisted-grading
- Hitlin, P. (2023, November 16). 1 in 4 teachers say AI tools like ChatGPT hurt K-12 education more than help. Pew Research Center. https://www.pewresearch.org/short-reads/2023/11/16/1-in-4-teachers-say-ai-tools-like-chatgpt-hurt-k-12-education-more-than-help/
- Horn, M. B. (2019, November 25). How China's AI tutors are reshaping education. Forbes. https://www.forbes.com/sites/michaelhorn/2019/11/25/how-chinas-ai-tutors-are-reshaping-education/
- IBM. (n.d.). Artificial intelligence training and certification. https://www.ibm.com/training/artificial-intelligence
- IBM. (n.d.). SkillsBuild: Free AI ethics course. https://skillsbuild.org/
- Intel. (2023). Intel® AI Global Impact Festival. https://www.intel.com/content/www/us/en/corporate-responsibility/ai-global-impact-festival.html
- Jones, C. (2023, September 25). AI education: California teachers use AI to grade papers. CalMatters. https://calmatters.org/education/2023/09/ai-education-california-teachers/
- Khan, S. (2023, May 11). An interview with Sal Khan on AI and the future of teaching. Forbes. https://www.forbes.com/sites/michaeldominy/2023/05/11/an-interview-with-sal-khan-on-ai-and-the-future-of-teaching/
- LinkedIn. (2025). Most in-demand skills 2025. https://www.linkedin.com/business/talent/blog/talent-strategy/most-in-demand-hard-and-soft-skills
- Markowitz, D. (2023, October 3). Advisory group promotes '5 big ideas in AI' for K-12 schools. Education Week. https://www.edweek.org/technology/advisory-group-promotes-5-big-ideas-in-ai-for-k-12-schools/2023/10
- MIT Media Lab. (n.d.). Detect deepfakes: How to counteract misinformation created by AI. https://detectdeepfakes.media.mit.edu/
- NSF. (2023). NSF leads national AI research and education efforts. https://www.nsf.gov/news/news summ.jsp?cntn id=304184
- ProPublica. (2016, May 23). Machine bias Risk assessments in criminal sentencing. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
- Richards, E. (2023, April 12). ChatGPT used by teachers more than students: New survey. USA Today. https://www.usatoday.com/story/news/education/2023/04/12/teachers-using-chatgpt-more-than-students-survey-says/11656830002/
- Stanford HAI. (2023). Human-Centered AI at Stanford University. https://hai.stanford.edu/
- Stanford Institute for Human-Centered Artificial Intelligence. (2021). China's AI education ambitions. https://hai.stanford.edu/news/chinas-ai-education-ambitions
- Stanford University AI Group. (n.d.). Student-led AI initiatives and clubs. https://ai.stanford.edu/
- Touretzky, D., Gardner-McCune, C., & Martin, F. (2020). Top 10 ethical AI practices to teach K–12 students. AI4K12. https://ai4k12.org/ethical-ai/
- Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2023). AI4K12: Five big ideas in artificial intelligence. AI4K12 Initiative. https://ai4k12.org
- UNESCO. (2023). AI competency framework for students. https://unesdoc.unesco.org/ark:/48223/pf0000386505

- UNESCO. (2023, October 31). Revolutionising accessibility: The role of AI in assistive technology. https://www.unesco.org/en/articles/revolutionising-accessibility-role-ai-assistive-technology
- University of Helsinki. (2021). Elements of AI has introduced one million people to the basics of artificial intelligence. https://www.helsinki.fi/en/news/artificial-intelligence/elements-ai-has-introduced-one-million-people-basics-artificial-intelligence
- Veritas AI. (2024, January 3). 14 best AI competitions for high school students in 2024. https://www.veritasai.com/blog/14-best-ai-competitions-for-high-school-students-in-2024
- Watson, T. (2024, February 1). Compared to K12, higher ed leads the charge in AI adoption. EdSurge. https://www.edsurge.com/news/2024-02-01-compared-to-k12-higher-ed-leads-the-charge-in-ai-adoption
- World Economic Forum. (2020). The future of jobs report 2020. https://www.weforum.org/reports/the-future-of-jobs-report-2020

